智慧城市产业应用实践,高精度火灾烟雾检测方案详解
然而,在实际产业中,由于发生火灾的环境复杂多样、干扰因素较多,对模型检测的精度具有一定的影响,另外,有很多物体和烟火较为相似,比如红色的灯光,容易造成模型误检。
针对如上问题,飞桨产业实践范例库开源了《火灾烟雾检测》方案,提供了从数据准备、技术方案、模型训练优化到模型部署的全流程可复用方案,提供误检率低至1.1%的模型优化方案,有效解决了复杂环境下烟火检测问题,降低产业落地门槛,适用于城市住宅、加油站、公路、森林等火灾高发场景。
⭐项目链接⭐
https://github.com/PaddlePaddle/PaddleX/tree/develop/examples
所有源码及教程均已开源,欢迎大家star鼓励~
方案难点
1.推理速度要求高: 在烟雾和火灾检测场景,需要模型能在火情发生的第一时间即做出响应,对模型推理速度有较高的要求;
项目方案
为了让模型结果更具说服力,我们重新定义了评价指标:
1.图片级别的召回率:只要在有目标的图片上检测出目标(不论框的个数),该图片被认为召回。计算有目标图片中被召回图片所占的比例,即为图片级别的召回率。
模型优化和效果
部署方案
注:图片来源于Stocksnap.io
产业应用案例
范例使用工具介绍
本范例应用使用飞桨PaddleX工具实现,PaddleX集成飞桨智能视觉领域图像分类、目标检测、语义分割、实例分割任务能力,将深度学习开发全流程从数据准备、模型训练与优化到多端部署端到端打通,开发者无需分别安装不同套件,以低代码的形式即可快速完成飞桨全流程开发。PaddleX 经过质检、安防、巡检、遥感、零售、医疗等十多个行业实际应用场景验证,沉淀产业实际经验,并提供丰富的案例实践教程,全程助力开发者产业实践落地。
产业实践范例教程
助力企业跨越AI落地鸿沟
飞桨产业实践范例,致力于加速AI在产业落地的前进路径,减少理论技术与产业应用的差距。范例来源于产业真实业务场景,通过完整的代码实现,提供从数据准备到模型部署的方案过程解析,堪称产业落地的“自动导航”。
真实产业场景:与实际具有AI应用的企业合作共建,选取企业高频需求的AI应用场景如智慧城市-安全帽检测、智能制造-表计读数等;
完整代码实现:提供可一键运行的代码,在“AI Studio一站式开发平台”上使用免费算力一键Notebook运行;
详细过程解析:深度解析从数据准备和处理、模型选择、模型优化和部署的AI落地全流程,共享可复用的模型调参和优化经验;
直达项目落地:百度高工手把手教用户进行全流程代码实践,轻松直达项目POC阶段。
精彩课程预告
为了让小伙伴们更便捷地应用火灾烟雾检测范例教程,百度高级研发工程师于3月31日20:30-21:00为大家深度解析从数据准备、方案设计到模型优化部署的开发全流程,通过3天的实战任务手把手教大家进行代码实践。
欢迎小伙伴们扫码进群,免费获取直播课和回放视频链接,更有机会获得覆盖智慧城市、工业制造、金融、互联网等行业的飞桨产业实践范例手册!也欢迎感兴趣的企业和开发者与我们联系,交流技术探讨合作。
扫码报名直播课,加入技术交流群
👇
相关阅读
如何在有限算力下实现智能驾驶多任务高精度识别?
高精度轻量级目标检测产业应用,实现多类通信塔识别
手把手教学电瓶车进电梯检测、多类别车辆追踪、异常行为检测产业级应用
解密体育背后AI黑科技:花样滑冰动作识别、多模视频分类和精彩片段剪辑
OCR产业应用实战,多类别电表读数识别方案详解
开奖预告
3月18日-4月1日期间
『分享最多』『阅读最多』榜单前5名活跃粉丝可获飞桨定制程序员盲盒一个
获奖名单将于4月3日公布~
关注【飞桨PaddlePaddle】公众号
获取更多技术内容~